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ABSTRACT
Previous research shows that developers spend most of their time
understanding code. Despite the importance of code understand-
ability for maintenance-related activities, an objective measure of it
remains an elusive goal. Recently, Scalabrino et al. reported on an
experiment with 46 Java developers designed to evaluate metrics
for code understandability. The authors collected and analyzed data
on more than a hundred features describing the code snippets, the
developers’ experience, and the developers’ performance on a quiz
designed to assess understanding. They concluded that none of the
metrics considered can individually capture understandability. Ex-
pecting that understandability is better captured by a combination
of multiple features, we present a reanalysis of the data from the
Scalabrino et al. study, in which we use different statistical model-
ing techniques. Our models suggest that some computed features of
code, such as those arising from syntactic structure and documenta-
tion, have a small but significant correlation with understandability.
Further, we construct a binary classifier of understandability based
on various interpretable code features, which has a small amount
of discriminating power. Our encouraging results, based on a small
data set, suggest that a useful metric of understandability could
feasibly be created, but more data is needed.

1 INTRODUCTION
Code understandability is critical for maintaining and developing
software. Tasks such as creating new features, fixing bugs, code re-
view, and refactoring require a deep understanding of code. Indeed,
previous research shows that developers spend around 70% of their
time understanding code [14]. An automatic measurement of code
understandability could be used as a fitness function in refactoring
tools, helping developers to write understandable code. It could also
be used for quality assurance as part of a build system, as a heuristic
to predict defects, or to assist open source project maintainers in
assessing the quality of large numbers of pull requests.

Despite its value, such a metric remains an elusive goal. Previous
attempts either have not been empirically evaluated [12, 13, 20],
include a metric in a larger quality model [1, 3], or only measure un-
derstandability at the whole-system level [7]. Intuitively, we might
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expect that code complexity or readability are related to developers’
ability to understand code, but there is a lack of empirical evidence
to support this belief. Research on code comprehension tends to be
focused on the cognitive processes of understanding code [21, 22],
or common beliefs, rather than empirical evaluation.

Numerous models and metrics have been proposed for a related
concept, code readability [6, 8, 9, 13, 16, 19]. Such metrics are gen-
erally based on developers’ perceived readability scores of code
snippets. For example, Buse and Weimer [6] trained an effective bi-
nary classifier for code readability based on a combination of many
codemetrics, using a data set of 100 small snippets labeled by 120 hu-
man subjects. However, readability scores do not necessarily reflect
understandability: a code snippet may be readable, e.g., following
good naming and syntax conventions, but not understandable, e.g.,
using complex logic or an unknown or poorly documented API.

The only exception to the literature scarcity on metrics for code
understandability is the recent work by Scalabrino et al. [18]. In
“Automatically Assessing Code Understandability: How Far Are We?”
(hereafter “the original study”), the authors gathered a small data
set on code understandability by having 46 students and develop-
ers evaluate Java code snippets. Importantly, they measured actual
understandability with three quiz questions for each snippet evalu-
ated. This diverges from previous research on readability, which
is based only on perception. For each snippet, they provide 121
metrics based on code, documentation, and developer experience.
These metrics were individually analyzed for correlation with un-
derstandability, and the study concluded that no individual metric
was significantly correlated with the outcome.

In this paper, we revisit Scalabrino et al.’s assumption that un-
derstandability can be captured with a single metric, and conjecture,
much like Buse and Weimer in their model of readability [6], that
understandability is better described by a combination of metrics.
To test our conjecture, we perform a reanalysis of the data in the
original study, but instead use multivariate statistical modeling
techniques for inference and prediction, as opposed to the analy-
sis of pairwise correlations in the original study. Specifically, we
investigate the following research questions: RQ1: Do any of the
121 metrics recorded correlate with understandability, other variables
held constant? and RQ2: Is it possible to create a measure of code
understandability based on a combination of these 121 metrics?

Our study can be considered a reanalysis, since we are applying
different statistical methods to the same data set; we did not repeat
the human evaluation of code snippets. More loosely, this could be
considered a specific type of replication, known as “pseudoreplica-
tion”, “complete secondary analysis”, or “internal replication” [11].
Reanalysis and replication in general is invaluable to the integrity of
empirical software engineering research, and we thank Scalabrino
et al. for making their data set publicly available for this purpose.
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2 DATA SET
Collection. In the original study,1 46 developers of varying levels
of experience were given a quiz to assess understanding of Java
code snippets. The code was taken from various large open source
projects such as Spring Roo andWeka. The quiz was implemented as
a web application that presented multiple questions. Each question
consisted of a snippet of code, for which a developer had unlimited
time to read and search online, followed by a yes/no response on
whether they understood the code (perceived understandability).
Three verification questions were then asked to see if the code was
truly understood (actual understandability). These were multiple
choice questions, each with four choices, which primarily focused
on the purpose (intent) of variables and methods. Developers were
asked to complete the quiz on eight separate code snippets. Of the
46 developers, 39 answered all eight questions, while 7 answered
between 1 and 3 questions, for a total of 324 observations.
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Figure 1: Java experience

Along with the developers’
responses, 121 features about
the code snippet and the devel-
opers’ experience were recorded.
The developers’ years of expe-
rience programming in general
and in Java specifically (Fig. 1)
were recorded, in addition to
the their position (BS/MS/PhD
student, professional developer,
open source developer). It’s clear
from Fig. 1 that years of experience in Java is correlated with the
percentage of verification questions answered correctly.

Most of these features were computed from the syntactic struc-
ture of the code, which was hypothesized to relate to understand-
ability: the number of lines, the number of tokens, the number of
variables, etc. Some features were computed from the documenta-
tion quality of the code, e.g., prevalence of comments or of internal
documentation for the methods used.
Processing. In preparation for multivariate regression modeling,
and following the principle of parsimony (seeking simple, more
generalizable models), we made several data transformations. First,
our intuition is that the quality of being a student should be less
important than the amount of programming experience; given also
the high class imbalance (32 of the participants were BS students),
we exclude this variable from our analysis. Instead, we introduce
two new variables based on self-reported years of programming
experience. We call a participant a professional if they have five
or more years of experience programming in any language, and
we call them a Java professional if they have five or more years of
experience specifically in Java. In this case, 13 of the participants
were professionals, and 4 were Java professionals. Although the
classes are imbalanced, we expect that Java professionals have a
significant advantage in answering the questions; therefore, this is
an important variable to include in our models.

Second, the actual understandability scores take on values in
{0, 0.334, 0.667, 1.0}, which we could potentially model using linear

1The data set is available online at https://dibt.unimol.it/report/understandability/

regression or multinomial logistic regression. However, to facili-
tate model selection and interpretation, we assert that a developer
understood the code if they answered two or more of the three
questions correctly. Hence, we introduce a new binary response
variable, understood, to capture this distinction.

Otherwise, we do not remove any entries (the original authors
removed outliers already), and use the variance inflation factor
(VIF) with a cutoff of 3 to diagnose multicollinearity [2].

3 ANALYSIS
We hypothesize that professional developers, by our operational-
ization, are more likely to understand the code snippets. Beyond
this, we approach our analysis with no a priori hypotheses, and use
model selection techniques to guide our exploration of the data.
What explains understandability?We construct binary logistic
regression models to see if a combination of metrics about code,
documentation, and developer experience can explain actual under-
standability. Since each participant answered up to eight questions,
the samples are not independent; each participant has a differ-
ent amount of experience and knowledge. To address this, we use
mixed-effects models [4], with a random effect to capture each
participant’s baseline ability to understand the code.

To find such a combination ofmetrics, we proceedwith twometh-
ods: First, we use principal component analysis to find a “small
number of interesting dimensions” [10], by automatically grouping
together correlated metrics and revealing which metrics explain
most of the variability. Based on the principal components, we man-
ually select “interesting” and minimally correlated metrics to in-
clude in our model. Second, we use forward stepwise selection [10],
where metrics are added to the model according to an information
criterion (AIC) [10]. This will also help to identify potentially inter-
esting metrics for further consideration. The following describes
each of the two methods in detail.
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Figure 2: PCA Scree Plot

Principal component analysis. To in-
form our exploration, we did principal
components analysis [10] to identify
which metrics explain the most vari-
ance in the data set. The metrics were
automatically scaled by R’s PCA func-
tion. We found that there is not a spe-
cific principal component that explains
most of the variance (Fig. 2). This is cor-
roborated by the original study, which
found that no individual metric was strongly correlated with un-
derstandability. For simplicity, we decided to analyze the loadings
of the first six components, explaining approximately 55% of the
variance.

By manual inspection, we found that the first six components
were roughly correlated with cyclomatic complexity, Halstead’s
volume, lines of code, number of operators, maximum line length,
and number of spaces. In some cases, the data set provides sev-
eral related metrics, e.g., about indentation and spacing. We chose
the most familiar metric in each case, e.g., cyclomatic complexity
instead of the “discrete Fourier transform of conditionals” [9]. Ad-
ditionally, we add the binary variable professional to better control
for participant experience.

https://dibt.unimol.it/report/understandability/
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Table 1: Explanatory models of understandability.
(a) Model based on manual
selection and PCA.

Variable Coefficient

(Intercept) −0.329
Professional 1.11∗∗
Cyclo.complexity −0.044
LOC −0.144
Volume −0.033
X.operators..avg. −0.018
X.spaces..avg. −0.158
Line.length..max. −0.392∗∗

N 324
Log Likelihood −198.174
AIC 414.349
BIC 448.376
R2m 0.0991
R2c 0.2061

∗∗∗p < .001; ∗∗p < .01; ∗p < .05

(b) Stepwise selection mixed
effects model.

Variable Coefficient

(Intercept) −0.398
Indentation.length..dft. 0.241
Literals..Visual.Y. −0.275
JavaProfessional 1.228
X.parameters −0.307
NMI..avg. 0.442∗∗
MIDQ..max. −0.392∗
X.periods..avg. −0.325∗
Professional 1.014∗
Line.length..max. −0.488∗∗
TC..avg. −0.793∗∗∗

N 324
Log Likelihood 185.00
AIC 394.00
BIC 439.37
R2m 0.2870
R2c 0.4106
∗∗∗p < .001; ∗∗p < .01; ∗p < .05

The model, summarized in Table 1a, has a pseudo-R2 (R2c ) of
about 20%.2 The only variables with a significant effect are max.
line length and professional. This is consistent with the original
study, which reported max. line length as one of the metrics most
correlated with understandability, though still to a small extent.

Interpreting the coefficients from the model, we note that: (1)
being a professional programmer increases the odds of understand-
ing the code by a factor of 3; and (2) the max. line length increasing
by one character decreases the odds by a factor of 0.98.

Stepwise selection.We conclude that understandability cannot be
a function of line length only, so we proceed to refine our variable
selection process. First, we removed twelve variables with missing
values. Next, to determine which metrics to include in the model,
we implemented a forward stepwise selection algorithm based on
AIC [10], iteratively selecting the metric which most reduces the
AIC. We selected ten variables and checked for multicollinearity
issues (VIF below 3).

The resulting model is summarized in Table 1b. As expected,
the new model is better at explaining understandability than the
previous model, with an R2c of 41%, and nearly all of the explanatory
variables have significant effects.

We performed model diagnostics, removing eight high influence
points with Cook’s distance greater than 4

n . Upon inspection, it
appears most of these points were professional programmers who
answered incorrectly. The data set also includes the time taken
for a developer to answer a question (not analyzed). In the case
of the most influential points, the time taken was often 0 seconds,
implying the question was perhaps not even read. The model fit to
the reduced data set was not substantially different than that fit to
the original, with coefficients differing by less than one standard
error. The coefficient for Java professional was more significant
(2.63), perhaps because three such subjects were removed.

2Since we use models with random effects, we compute pseudo-R2 values to assess
goodness of fit: one without random effects, R2

m , and one with, R2
c [15].

Interpreting the significant coefficients in Table 1b, we draw the
following observations: (1) A one unit increase in NMI.avg., or nar-
row meaning identifiers, a measure of the descriptiveness of variable
names [18], increases the odds of understanding by a factor of 1.8;
this appeals to common beliefs. (2) A unit increase in MIDQ.max.,
or methods internal documentation quality, a measure of the quality
of documentation of the methods called in the code snippet [18]
(e.g., from other libraries), correlates with lower understandability,
or a change by a factor of 0.39. We find it unintuitive that an opera-
tionalization of better documentation correlates with lower chances
of understanding. We conjecture that more documentation could be
correlated with more complex code. (3) A larger number of periods
per line, X.periods.avg., is correlated with lower understandability
(factor 0.34). Since periods are associated with calling methods from
other classes, this agrees with intuition. (4) As we would expect,
being a Professional increases the odds of understanding by a factor
of 2.75. (5) As in the previous model inspired by PCA, we find that
a one-character increase in max. line length correlates with lower
odds of understanding (factor 0.98). (6) Average textual coherence
(TC..avg.), a metric proposed as a measure of the "closeness of con-
cepts" in a method [17], is counterintuitively associated with much
lower odds of understanding by a multiplicative factor of 0.027.
Can we predict understandability? The previous explanatory
models attempt to identify the factors that correlate with under-
standability based on the whole data set. We now construct a model
that can make predictions based on new, unseen observations.

Since random effects cannot be estimated based on a single new
observation, we instead fit a fixed effects binary logistic regression
model with understandability as a response. Such a model, given the
independent variables, predicts a value between 0 and 1: generally a
prediction greater than the threshold 0.5 is taken to be the positive
class (understood). This value could be interpreted as a metric of
percentage understanability.

We use LASSO (Least Absolute Shrinkage and Selection Oper-
ator) regression [10], which is similar to least-squares regression,
but has the added benefit of automatically selecting a subset of the
metrics to be used in the model, which prevents overfitting; that is,
if we included all the metrics, the model would probably have good
performance on our data set but bad performance on new data.
Since most of our 121 variables will be eliminated, this also results
in a more interpretable model that we think would be appropriate
for an automatic metric of understandability: specific issues, such
as indentation or complexity, could be pointed out.

LASSO requires a tuning parameter, which we selected according
to multiple runs of 10-fold cross validation [10]. We scaled metrics
to be on the same scale and converted factors to dummy variables.
To simulate new observations, we evaluated the model by splitting
the data into a training set (75% of the data) and a test set (25%).
The model was trained with the training set and its predictive
performance evaluated on the test set. Since it is possible to be
“lucky”, we averaged our results over 5000 random splits, finding a
new tuning parameter on the training data each time.

A common way to evaluate classifier performance is with an
ROC curve (example in Fig. 3). This plots the “true positive” versus
the “false positive” classification rate for various thresholds (we
suggested 0.5 in the first paragraph). Importantly, an ROC curve
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that follows the diagonal line implies that the model has no predic-
tive power. An optimal curve would hug the top left corner. The
performance of the classifier over all thresholds can be summarized
by the area under the curve (AUC) [10]; an optimal value is 1.0,
while 0.5 implies guessing.
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Figure 3: ROC curve for
LASSO model

Fig. 3 displays the average ROC
curve for each of the 5000 random
train/test splits in blue, and a 95
percentile band in gray. On aver-
age, the curve falls above the diag-
onal; that is, the model has a small
amount of discriminating power.
The average AUC is 0.64, while the
2.5%-tile and 97.5%-tile are 0.54 and
0.74, respectively.

Since the LASSO does not select
the same subset of metrics for each

random split [10], we report some commonly occurring metrics:
textual coherence (99.5%), professional (99.3%), Java professional
(93.5%), number of parameters (92.1%), number of periods (84.9%),
methods internal documentation quality (78.3%), max. line length
(70.5%). The average number of metrics selected was 18. Overall,
these agree with the metrics selected earlier with stepwise selection.

4 DISCUSSION AND CONCLUSION
Research questions. Overall, it seems that combined metrics mat-
ter: our models can explain some of the underlying variability in
understanding. Most of our results appeal to intuition: more specific
variables, fewer parameters and literals, fewer periods, and shorter
lines are correlated with more readable code. However, we did not
expect to find that documentation quality and textual coherence
would be associated with less understandable code.

At the least, we can answer RQ1 positively: various computed
characteristics of the code snippets correlate with their understand-
ability, other variables held constant. In both the PCA inspired
model and the stepwise selected model, it is clear that the greatest
factor in code understanding is the participant’s level of experi-
ence; yet, our models show that even when this is controlled for,
other metrics still play a significant role in understandability, a
conclusion that could not be achieved with the analysis of bivariate
correlations used in the original study.

RQ2 asked whether we could capture a metric of understand-
ability using a combination of the 121 metrics considered. After
performing LASSO regression with cross-validation, we found a
small amount of evidence that it is possible to discriminate hard-to-
understand code from easy-to-understand code. While an AUC of
0.5 is equivalent to guessing understandability, our model achieved
an average AUC of 0.64, which implies some discriminating power.
Our proposed metric would be the logistic regression prediction
which falls between 0 and 1, and could be interpreted as percent
understandability. To be useful, this functionality would require a
high level of accuracy, which our model cannot provide. However,
in light of our model’s small amount of predictive power, we expect
that accuracy could be increased with a larger data set provided by
a more comprehensive human study of code understanding.

Unlike the original study, which only considered the correla-
tion between individual metrics and understanding, we combined
metrics in statistical models, expecting that the accumulation of
many different factors contributes to understandability. We found
a small amount of evidence that such combinations can explain
understandability better than individual metrics, a more positive
conclusion than the original study.
Limitations & threats to validity. The greatest limitation of this
study was the relatively small data set; the original study provided
only 324 observations from 46 developers. Creating such data sets
requires a large amount of effort from both the experimenter and the
participants, thus it is difficult to get larger amounts of similar data.

Given such high dimensionality (121 explanatory variables), it is
possible for correlations to be spurious. We attempted to alleviate
this possibility by using cross validation in the predictive section.
Nonetheless, such concerns are inherent to exploratory data analy-
ses and cannot be avoided without collecting more data in a new
experiment.

We used forward stepwise selection based on AIC to produce
a model for inference, a practice that is controversial and subject
to ongoing research since it can bias significance levels towards
zero [5]. However, we limited the model to ten predictors to reduce
overfitting and verified that the model performed well on bootstrap
samples after the selection process. The selected predictors mostly
agree with our intuition about code understanding. Note that the
model based on PCA is not vulnerable to such bias.

In some instances, we found that the verification questions used
in the original study were excessively shallow, i.e., they did not
agree with our notions of understanding. Many focused on the
purpose of specific variables, ignoring the “big picture”, and some
questions had ambiguous answers differing by only a single word.
In constructing a metric of understandability, we think that a large,
high-quality data set should be the foremost concern.
Implications for developers. Thoughwewere not able to present
a model that assessed code understandability with high accuracy,
given our limited success with a small data set and relatively sim-
ple modeling techniques, we expect that understandability will be
measurable in the future.

We used conventional statistical techniques to predict under-
standability, allowing for easy interpretation, i.e., determining spe-
cific features of code that reduce understandability. For maximal
usefulness, future work should continue to embrace principle of
parsimony, favoring the simplest possible model.

As more effective measures of understandability are developed,
IDE plugins could be offered which notify the user of the quality
of the code they have written. Given interpretable models, specific
suggestions could be given and the user could view their improve-
ments. Distributed projects, those with many disparate developers,
could include understandability thresholds in their build systems,
automatically showing project maintainers a summary of under-
standability (e.g., as a badge [23]) before taking valuable time to
do manual code review. Ultimately a metric of understandability
would make software engineering more efficient, reducing costs
and the prevalence of faults.

Our R source code is publicly available online at
https://github.com/CMUSTRUDEL/code-understandability.

https://github.com/CMUSTRUDEL/code-understandability
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