Socio-Technical Work-Rate Increase Associates
With Changes in Work Patterns in Online Projects

Farhana Sarker Bogdan Vasilescu

University of California, Davis Carnegie Mellon University University of Auckland

fasarker @ucdavis.edu vasilescu@cmu.edu

Abstract—Software developers work on a variety of tasks
ranging from the technical, e.g., writing code, to the social, e.g.,
participating in issue resolution discussions. The amount of work
developers perform per week (their work-rate) also varies and
depends on project needs and developer schedules. Prior work
has shown that while moderate levels of increased technical work
and multitasking lead to higher productivity, beyond a certain
threshold, they can lead to lowered performance.

Here, we study how increases in the short-term work-rate
along both the technical and social dimensions are associated with
changes in developers’ work patterns, in particular communica-
tion sentiment, technical productivity, and social productivity. We
surveyed active and prolific developers on GitHub to understand
the causes and impacts of increased work-rates. Guided by
the responses, we developed regression models to study how
communication and committing patterns change with increased
work-rates and fit those models to large-scale data gathered
from traces left by thousands of GitHub developers. From our
survey and models, we find that most developers do experience
work-rate-increase-related changes in behavior. Most notably,
our models show that there is a sizable effect when developers
comment much more than their average: the negative sentiment
in their comments increases, suggesting an increased level of
stress. Our models also show that committing patterns do not
change with increased commenting, and vice versa, suggesting
that technical and social activities tend not to be multitasked.

I. INTRODUCTION

Software developers who work in distributed, online
projects often work on a variety of tasks [1]], [2]. Some of
those are technical, like coding, testing, and documenting
code. Others are of the coordinating, or social, variety, like
commenting on issues, agreeing on directions, responding to
calls for bug fixing, etc. Both kinds of tasks are essential
in healthy, multi-developer software projects, and they both
count toward the work done per unit of time, or work-rate of
developers. It is well-known that if the developer work-rate
gets too high, it can contribute to work-related stress and lead
to negative effects [3]—[5].

Figs. [I] and [2] show the weekly rates of commits and
comments for a random prolific developer on GitHub. Clearly,
the developer’s contribution rates can frequently exceed 1
standard deviation above the developer’s average contribution
rates in both commits and comments. In general, keeping
the work-rate in the “safe-zone” can result in healthier work
environments and happier individuals and teams. Awareness of
historical work-rates can help ensure work-rates do not reach
unsafe levels.

Vladimir Filkov
University of California, Davis
viilkov@ucdavis.edu

Kelly Blincoe

k.blincoe @auckland.ac.nz

40 A
-- 1 Std. Dev.
-- Mean

w
o
L

N
o
L

Number of Commits

[
o
L

2014
Week

2012

Fig. 1. Example number of commits per week for a prolific developer.

Traditional lines-per-day measures of work aggregate, to an
extent, the work-rate of technical tasks. While coordination
tasks figure in there too by association, it is not simple to
unravel their contribution to those measures [2]. This is more
so during some development stages, especially at early stages
in the development of a feature, when coordination tasks may
dominate a developer’s time compared to at other stages,
where development and testing dominate. In addition, many
developers work on multiple projects at a time, and the tasks
related to the context-switching overhead incurred contribute
to their aggregate work-rates [1], [6]-[8]. Prior work has
shown that multitasking has significant costs and may result
in lowered technical performance if a work-rate threshold is
crossed, mainly due to patterns in the task-switching over-
head [1]. That work did not consider the multiple components
involved in one’s work; it only considered technical activity
within multitasking developers’ projects.

Thus, the many different tasks and the number of projects
in which developers are involved should all be considered
when calculating their work-rates. Knowing how the different
work-rate dimensions interact and associate with observable
developer work behavior can aid in recognizing when the
work-rates indicate overload and/or may affect others. This
knowledge can enable people to ameliorate or even preempt
such situations. So, given that developers multitask on at least
two types of tasks, technical and coordination, and experience
varied rates of work, in what observable ways does their
behavior change as their work-rates increase? And how can
we use such data to model work patterns indicative of work-
rate-related overload in software developers?

Here, we study how developers’ communication and com-
mitting behaviors change with significant work-rate increase.
Given a large enough set of developers’ commit and commu-
nication traces, the work-rates should form a smooth distri-
bution, enabling analysis of its tails, for any sizable sample
of developers. Our thesis is that the effects of work-rate
changes over time may be identifiable from large amounts of
longitudinal trace data of the variety of social and technical
activities undertaken by developers. While different developers
may have different steady (average) work-rates, significant
increases in the work-rates compared to their average rates
can observably modify their work behavior.

To show that, we undertake a mixed-methods, qualitative
and quantitative study. First, we conducted a survey of GitHub
developers to characterize the ways in which developers
change their work behavior in response to increased technical
and social work-rates, as well as the self-identified deter-
minants of those reactions. The survey helped us identify
relevant variables characterizing developers’ actions in both
the technical and social dimensions. Those included weekly
commit and comment numbers, comment types (discussion
and code review), comment text length and sentiment (posi-
tive, negative, and neutral), as well as measures of context-
switching overhead identified in prior studies [1f]. Then, using
a dataset of developer trace data from a large number of
GitHub projects, we built regression models over the above
variables to determine how communication and committing
behaviors change in response to work-rates that are higher
than expected for each developer. We found the following:

e Many developers responded that they experience work-

rate-related stress and deal with it in various ways.

e There is a long tail in both the normalized commit and
comment rate distributions, indicating that there are more-
than-expected number of weeks when developers have
much higher-than-average work-rates.

« Notably, we find that when the number of comments
increases significantly above a developer’s average; the
developer’s negative comments, on average, increase as
well, indicating an increased level of stress.

« Interestingly, we found that committing activities are not
affected by increases in communication work-rate, and
vice-versa for commenting activities, suggesting mutual
independence between them.

II. THEORY AND RESEARCH QUESTIONS

In this section, we review relevant theories and prior work
on effects of high work-rates and workload and the associated
stress on developer performance, and we develop our research
questions. Our work fits in the broader context of behavioral
software engineering [9].

A. Social Coding Pressures

Developing software has always been a stressful activity,
e.g., because of constantly changing requirements, increasing
user demands for agility, market pressure, unstable technology,
and breaking changes, just to name a few. In a fast-paced,

-- 1 Std. Dev.
-- Mean

20+

o MU —

Number of Comments

2014 2016

Week

2012

Fig. 2. Example number of comments per week for a prolific developer.

social-coding environment like GitHub, several additional fac-
tors may contribute to creating a more stressful environment.

Social-coding sites like GitHub connect developers from
around the world into a fast-paced, around-the-sun [[10] de-
velopment environment, enabling more online communication
and coordination. A plethora of online communication media,
including social media, are being used by software developers
in their daily work [_2], [11]]-[14]]; among the top channels for
discussing development activities are code hosting sites (e.g.,
discussions on pull requests and issues), private and public
chats, private discussions (email), and discussion groups [?2].

Still, despite the benefit of instant communication regardless
of distance or time, such quick methods of communication can
lead to communication overload, which has been associated
with stress and diminishing productivity [3], [4], [15]. Com-
munication load accumulates through the increasing number of
messages sent and received over online communication tools
like email and social media. In social coding, communication
load increases still through the constant stream of pull requests
and issues, which generate additional discussion. As social
expectations often urge users to respond to messages within
a socially acceptable timeframe to prevent negative feelings
from communicating partners [15]], users may develop a sense
of social pressure to be constantly available in order to respond
to their messages “on time” [4]. In open-source development,
unresponsiveness from project maintainers to pull requests
by newcomers can negatively affect the latter’s motivation
and engagement with the project [16]]. Reinecke et al., [4]]
found that the social pressure to respond to online messages
leads to high levels of Internet multitasking (users concurrently
respond to online messages while engaging in other activities)
and communication overload, both of which are associated
with burnout and anxiety [4]. Studies of communication over-
load in the workplace also show that people with stronger
perceived notions of communication overload are likelier to
experience burnout and to be less productive [3]].

Also related is the perception that contributing to open-
source projects on GitHub is like being onstage [17]]. Because
of the high transparency [18|] of everyone’s actions enabled
by public GitHub profiles, active users experience a clear
awareness of the audience for their actions, which influences
how they behave. GitHub profiles are also used as signaling

mechanisms [19]-[21]]. Users, contributors, and maintainers
of open-source (inside the platform) and potential employers
(outside the platform) all rely on signals extracted from
GitHub activity traces to make rich inferences about GitHub
participants and the quality of their work. The signaling value
of GitHub activity traces to different stakeholders, characteris-
tic of social-coding environments, creates incentives for people
to be more active than otherwise and potentially more stressed.
Another dimension of social-coding stress comes from the
interconnected nature of modern OSS work. As more code
becomes available and is being reused, projects tend to form
complex networks of interdependencies, i.e., ecosystems [22],
in which local changes can generate network effects, and
stress, downstream. E.g., prior work has found that in such
environments, issue reports often get tangled [23[], [24], and
breaking changes induce costs on users downstream [25].
The signaling value of high levels of GitHub activity and
interconnected nature of modern-day OSS development create
an environment ripe for people to multitask and switch focus
often between different projects and activity types [1]. Yet,
context switching between tasks incurs cognitive-switching
costs for interrupting one task and resuming another [6], [7].
When switching costs are high, multitasking leads to mental
congestion and decreased productivity; workers become over-
loaded [J5]], increasingly slower, and error-prone [8]], [26]—[28]].
Past studies have found that work-related stress is a growing
problem for knowledge workers [29], [30]. Software devel-
opers are a subset of this population of people who “think
for a living” [31]]. Kristensen identified six job characteristics
that influence stress: control or influence, predictability, social
support, meaning, demands, and reward [32]]. The demands of
a job are related to both the amount and difficulty of tasks,
which associate with the work-rate of an employee. Galbraith
argued that organizational culture also influences the stress-
levels of employees [33]]. Mark ef al., also found that work
interruptions lead to higher stress [34]. Other studies consid-
ered the impact of stress on knowledge workers, finding that
stress can cause physical illnesses [35]], [36]]. Here, we focus
on work-rate increase as a stressor in software developers.

B. Our Research Questions

The discussion above suggests that modern open-source
software development, especially on social-coding platforms
like GitHub, is a high-workload, high-work-rate, high-stress
environment. High levels of activity may provide signaling
benefits, and opportunities to engage in multiple activities
arise naturally and constantly as open-source grows. Yet,
attending to high volumes of issues and pull requests can be
overwhelming, switching focus too much can be costly, and
being constantly onstage can be draining.

We adopt a socio-technical view of open-source software
development on GitHub to study how operating in a high-
workload, high-work-rate, high-stress environment impacts
developer performance along two dimensions: (1) discussions
around code and issues and (2) commits to repositories.
While prior research on software development productivity

has focused mostly on technical contributions to projects, the
social aspects of development are just as important. Online
communication is an essential part of software development,
and the frequency and social transparency that it imposes may
cause social pressure, as discussed above. We hypothesize
that high increases in work-rate, along both dimensions, are
associated with abnormal work patterns, which could indicate
stress. In turn, high stress could affect developers’ linguistic
patterns and committing/commenting behaviors on GitHub.

First, we examine the perceptions of developers on work-
related stress and social pressure:
RQ 1: What are the perceived causes and impacts of stress
and social pressure?

Guided by the RQ1 results, we investigate divergence from
regular work patterns along both dimensions:
RQ 2: How prevalent are higher-than-average rates of commit
and communication activities? How prevalent are they per
individual?

Then, we model the effects of increased workload on
developers’ work patterns along each dimension:
RQ 3: What are the covariates of increased work activities
that associate with negative or increased communication?
RQ 4: What are the covariates of increased work activities
that associate with a higher number of commits?

III. METHODOLOGY

We used a mixed-methods approach with a sequential
exploratory strategy [37]. To inform our understanding of
the causes of social pressure and stress on GitHub, we first
surveyed a set of active and prolific developers on GitHub.
Based on the responses, we analyzed GitHub activity data via
regression modeling to model changes in developers’ work
patterns in terms of technical and social work-rates.

A. GitHub Developer Dataset

For both our survey and trace data analysis, we used the
January Ist, 2018 database dump provided by GHTorrent [38].
We first merged aliases of each existing developer into a single
account using a set of heuristics (such as merging aliases with
the same email address) [39]. We then chose to consider only
active and prolific developers to ensure that the developers who
we contacted for the survey were still active and experienced
enough to give us reliable responses, and also to ensure that
we would have enough developer activity data to conduct a
thorough and meaningful empirical analysis of the variance
around developers’ mean levels of activity. Consequently, we
chose a subset of developers who have a span of at least 5
years between their first and last commits and who made at
least 500 commits to at least 10 distinct, non-forked, existing
repositories, a definition of active and prolific developers that
we adopted from prior work on data from GHTorrent [1[]. To
filter out rewritten commit histories with potentially incorrect
timestamps, we considered only commits made between 2008
(the year GitHub went online) and January Ist, 2018 (the
last date of the dump). Our final dataset consisted of 57,977
developers. 31.7% of them had at least 2 aliases, and the
maximum number of aliases for a single developer was 13.

B. Qualitative Analysis: Survey

To develop our survey, a pilot survey was sent to 350
randomly selected developers from a set of prolific developers
from a 2016 GHTorrent database dump. We filtered the
developers similarly as in Section The pilot survey ob-
tained 45 responses (a 13% response rate). It contained many
open-ended questions and some closed-set questions where
participants could also write-in their own responses. Some
sample open-ended questions that we asked in the pilot survey
include: How do you become aware of the stress of others on
your team? In what ways are you impacted by the stress of
others on your team? What causes you work-related stress?
What do you do to try to reduce your stress? The closed-set
responses were developed from findings of previous work [1]],
[4]], but we allowed participants to provide their own responses
so that we could develop a more comprehensive survey. Using
the responses to these open-ended questions and the write-in
responses, we used Thematic Content Analysis [40] to identify
a closed-set of options for each question in our final survey
to allow participants to rate each item using a Likert scale.

The thematic content analysis of the pilot survey data was
done by one of the authors of this paper together with a
clinical psychologist. It allowed us to create a list of options
for these questions in the final version of our survey. For
example, one participant in the pilot survey said that a cause of
work-related stress was “the feeling of being behind on work,
especially if 1 have verbally offered to do that work.” This
(and similar responses) resulted in having “time pressure” as
a response option to this question in our final survey. The final
set of options for each question is shown in the figures which
summarize the results for each question in Section For
all questions with a closed-set of responses, we also allowed
participants to select “other” and write in their own response.

We sent the final survey to 2,000 GitHub users randomly
selected from the set of prolific developers described in
Sec. We obtained 465 responses (a 23% response rate).
All questions were optional. The survey included multiple-
choice and Likert-scale questions. We asked the developers
questions related to work-related stress and work-related social
pressure. Respondents were asked to only consider the GitHub
projects they currently contribute to when answering all ques-
tions. Participants had an average of 15 years of development
experience and 7 years of experience with GitHub.

C. Quantitative Analysis: Online Activity Trace Data

We conducted a quantitative analysis on the technical and
social trace activity of 3,000 developers randomly selected
from the set of developers described in Section [[II-A] Before
selecting the 3,000 developers, we first searched for keywords
like build, auto, exporter, and bot within users’ names, logins,
and emails in order to find and remove bots and their activity.
After manually inspecting the search results, we removed 21
users that were obviously bots. The 21 bots had contributed
about 552,237 comments and about 2,070,653 commits.

1) Measuring Technical Activity: We consider commits as
indicators and measures of technical contributions. Here we

consider commits made between 2008 and 2018 to non-forked,
existing repositories. The developers in our dataset contributed
a total of 6,245,569 commits to 151,262 repositories.

2) Measuring Social Activity: Social activity within repos-
itories on GitHub exists mainly in two forms: discussion
comments and code review comments. Discussion comments
exist on issues and pull requests. Code review comments exist
on commits, which may be associated with pull requests or
not. Code review comments differ from discussion comments
in that a code review comment is made on specific lines of
code within a Git diff, whereas a discussion comment is made
within a single thread that is associated with either an issue
or pull request. Code review comments made on individual
commits not associated with pull requests have the additional
option of being made on the entire commit rather than on
specific lines within the Git diff. We consider all discussion
and code review comments as developers’ social activity.

To retrieve comments, we queried both GHTorrent’s public
MongoDB database and the GitHub API, as some data was
missing from the MongoDB database [41]]. From GHTorrent’s
MongoDB database, we retrieved about 98% of all devel-
opers’ comments. We then queried the GitHub API using
the PyGithub Python library to retrieve the remainder of the
comments, raising our percentage of retrieved comments to
about 99.7%. The rest of the comments appeared to have been
deleted. Furthermore, we filtered the comments to take only
those made between 2008 and 2018 to non-forked, existing
repositories. In total, our final comment dataset consisted
of 1,777,496 comments made to 68,516 repositories. The
distribution of comment types are as follows: 47.5% discussion
comments made on issues, 32.4% discussion comments made
on pull requests, 17.9% code review comments made on
commits within pull requests, and 2.2% code review comments
made on commits not associated with pull requests.

3) Sentiment Analysis of Developers’ Comments: Senti-
ment analysis has often been used to study the emotional
polarity of pieces of text within the software engineering
domain [42]-[44]. We use the sentiment of a comment as one
method of measuring developers’ feelings/potential stress.

Well-known sentiment analysis tools are often trained on
social media corpora, making them unsuited for classifying
text within the software engineering domain [45]]. Comments
made on social media outlets like Twitter are not represen-
tative of developers’ technical conversations, and tools that
are built on top of such corpora are known to misclassify
software engineering text. In fact, a study of the effects
of common, off-the-shelf tools like NLTK, SentiStrength,
Alchemy, and Stanford NLP on technical text show that their
classifications of software engineering text tend to disagree
with human-labeled sentiments and also tend to disagree with
each other [45]. Further studies show that existing tools tend
to have an unrepresentative, negative bias when classifying
technical texts [46]], since some technical phrases such as “kill
a process” and ‘“‘create a patch” have negative connotations in
layman terms [45], [46]. So, we found it necessary to explore
tools that are better-suited to the software engineering domain.

TABLE I
SENTIMENT DISTRIBUTION/COMMENT TYPE (844,366 ISSUE DIS-
CUSSION; 576,578 PR DISCUSSION; 318,189 PR CR; 38,363 COMMIT CR).

Comment Type % Pos % Neg % Neu
Discussion on Issues 24.0 11.5 64.5
Discussion on PRs 32.5 10.0 57.6
CR on PRs 15.4 9.5 75.1
CR on Non-PR Commits 20.3 11.3 68.4
Total 25.2 10.6 64.2

There are few existing software-engineering-specific senti-
ment analysis tools [47]-[49]. Out of those, we chose to use
Senti4SD [49]], a post-level sentiment classifier that is trained
on a set of about 4,000 Stack Overflow posts, manually-
annotated by a group of trained computer science students. To
compute the sentiment of a post, Senti4SD extracts a series of
features, including lexicon-based features (number of tokens
with positive/negative polarity, number of positive/negative
emoticons, presence of exclamation marks, etc.), keyword-
based features (number of uni-grams and bi-grams, number
of elongated words, number of uppercase words, number of
slang expressions like ‘lol’ that represent laughter, etc.), and
semantic-based features (cosine similarity between post and
prototype polarity vectors). These features were developed us-
ing polarity assignments within the SentiStrength lexicon [50].
Furthermore, the semantic-based features derive word mean-
ings from a Distributional Semantic Model built on 20 million
Stack Overflow comments, questions, and answers. These
extensive strategies for feature extraction allow Senti4SD to
significantly reduce the amount of text that is misclassified as
negative compared to other tools [49].

Senti4SD has a slight disadvantage in that long posts can be
misclassified if they contain higher distributions of excessive
words whose calculated polarities do not convey the overall
sentiment of the post [49]. To combat the effect of com-
ment length on sentiment classification, we first preprocessed
comments by removing portions that were not likely to con-
tribute to the overall sentiment, such as code snippets, HTML
tags, and URLs [49], as well as non-ASCII characters. We
removed code snippets by using regular expressions to locate
sections of comments surrounded by single or triple back-
ticks, which users can use to highlight code segments within
their comments. We also used regular expressions to locate
and remove HTML tags and URLs. Furthermore, we removed
inline references to other comments, which are prepended with
the ‘>’ character, placing sentiment analysis focus on the
actual comment made. Our preprocessing steps reduced the
average length of all comments by about 71.6 characters and
reduced the percentage of comments that were classified as
negative by about 1.9%.

The final distribution of sentiments within our comment
dataset is: 25.2% positive, 10.6% negative, and 64.2% neutral.
Table [I] shows a breakdown of sentiment per comment type,
along with the number of comments per type. “PR” stands for
“pull request,” and “CR” stands for “code review.”

Case Study of Negative Comments: We manually analyzed a

set of 50 random comments that were classified as negative to
better understand their context. We found a variety of different
types of negative comments. Here we briefly describe the types
and provide an illustrative example for each.

o Negative reviews. “Given that view_or_value may trans-
fer ownership, I'm very certain you want to say 'const
view_or_value<View, Value><&' here.”

« Indicating work will not be done or will be delayed. “This
will have to wait till the weekend because I don't seem
to have enough time this week to do a review; sorry”

o Admitting mistakes. “Odd, that must have happened
when I copied it from one dev checkout to another, sorry
about that. Fixing now.”

o Disagreements. “I also find a bare 'l was told to do
so' argument rather difficult to accept”

o Lack of skills/understanding. “I'm not sure what to do
here, so I just added test data for mdstat from last posts”

Thus, we find that Senti4SD successfully identified negative
comments.

4) Data Corresponding to Threads: To assess the asso-
ciation of comment interdependence with developers’ work
patterns, we gather two additional measures per comment:
the thread position of the comment (i.e., the position of
the comment within a thread) and the response time of the
comment.

We consider all discussion comments that were made on the
same issue or pull request as belonging to the same thread,
and we consider all code review comments that were made on
the same Git diff position of the same commit as belonging
to the same thread. Furthermore, we consider all code review
comments that were made on the same, entire commit (rather
than on a Git diff position of the commit) as belonging to the
same thread. Thus, if the thread position of a comment is 5,
then it was the 5th comment made within its thread.

We consider the response time of a comment to be the
time difference between its timestamp and the timestamp of
the most recent comment made before it on the same thread,
measured in seconds. If a comment is the first comment in
its thread, then we consider its response time to be the time
difference between its timestamp and the timestamp of when
its thread (i.e., its issue, pull request, or commit) was created.
We disregarded about 0.2% of all comments which had
negative response times (probably due to incorrectly recorded
timestamps and/or to later updates to earlier comments).

5) Noting Company Affiliations: To study whether com-
pany affiliations affect work patterns, we also determine
whether each developer’s account is associated with a com-
pany. If a developer’s “company” section is filled out within
the developer’s GitHub profile, we consider this developer to
be affiliated with a company.

6) Multitasking Measures: Prior work has shown that de-
velopers often work on multiple projects in parallel, to the
extent that the level of context switching required by high
levels of multitasking correlates with decreased productivity
and poor performance [1]. Thus, multitasking and context-
switching levels can further reveal the amount of workload a

developer is juggling and therefore indicate how much work
pressure a developer is under. We also gather weekly multi-
tasking and context-switching measures for each developer.

We adopt three measures of technical multitasking de-
veloped in prior work, where contributions are mea-
sured in commits (cmits): the average number of projects
worked on per active day (days_active_cmit) within a
week (avg_projs_cmitted_per_day), the diversity of fo-
cus switches among projects worked on within a week
(sfocus_cmit), and the diversity of day-to-day focus switches
among projects worked on within a week (sswitch_cmit) [1].
sfocus_cmit ranges between 0 and logo /N, where N is the
number of projects worked on during the week. The higher the
value, the more equally a developer contributes to each project.
sswitch_cmit uses focus shifting networks (FSNs) [51] to
capture the repetitiveness of a developer’s day-to-day focus-
switching behavior among projects during a week. The lower
the value, the less repetitive a developer’s focus-switching
behavior is from day to day.

Analogously, we define three measures of social mul-
titasking: avg_projs_cmnted_per_day, sfocus_cmnt, and
sswitch_cmnt, where contributions are measured in com-
ments (cmnts) rather than commits.

7) Regression Modeling: We model how developers’ com-
mitting and commenting behaviors change as a function of
social and technical work-rate increases using hierarchical
regression analyses. To gather a longitudinal dataset for this
analysis, we first aggregate developers’ commit and comment
activity in each week that they are active. The resulting
values describe developers’ work-rates for each week. We
then combine this data with the weekly multitasking measures
described in Section

We remove the top 1% of outliers from a number of
variables (cmits, projs_cmitted, cmnts, projs_cmnted,
avg_length, avg_thread_pos, and avg_response_time) that
follow an exponential distribution to avoid potential high-
leverage points issues. To avoid extreme values in the fixed
effects, we log transform the avg_response_time variable,
which has high values and variance.

Per-Developer Z-Normalization: Our research questions re-
volve around studying work-rate that is much higher than
average. To that end, we calculate the average activity per
week for each developer as a baseline, compared to which
we track activity deviations in different weeks. We do this by
calculating the per-developer average and standard deviation
(over all their active weeks), and then for each active week 7,

z-normalized commit and comment activity:
variable; —average(variable)
st.dev(variable)
In this way, we can model deviations from the average in

units of standard deviation. To identify high-activity weeks,
we calculate for each week a binary indicator, or factor:
1 (true) when the variable’s value is more than 1 standard
deviation away from that developer’s average on that variable,
i.e., variable_z score is greater than 1, and O (false) otherwise,
e.g., in Fig.|[l] there are 10 weeks during which that developer

variable_z; =

exhibited a commit-rate more than one standard deviation
higher than the developer’s average commit-rate.

Below is a list of the z-standardized variable names we use
within our models, along with their definitions:

o {cmit|emnt}_z: z-normalized number of

commits/comments,

e neg_z: z-normalized number of negative comments,

o projs_{cmit|cmnt}_z: z-normalized number of projects

committed to/commented on,

o days_activ_{cmitlemnt}_z: z-normalized number of

days on which users committed/commented,

Developers who did not have much variation in their values
for a certain variable had undefined values for the correspond-
ing z-score values for that variable, e.g., a developer who made
1 comment per week for every week commented will have
undefined values for the cmnt_z variable because the standard
deviation of cmnts for each week is 0. We excluded these
undefined values from our dataset, removing 152 (5.1% of)
users and 24,062 (4.9% of) rows of data from our dataset.

The summary statistics of our final, filtered weekly dataset
that contains all weeks where developers commit or comment
are shown in Table This dataset, which we use for our
models, contains 466,858 rows from 2,848 developers.
Linear Mixed-Effect Models: We use the R project library
Imer that implements linear mixed-effects regression [52]
(LMER) to measure the relationship between our outcomes
(dependent variables) and our explanatory variables of interest,
under the effect of various controls. LMER can be seen as
an extension of standard ordinary least squares (OLS) linear
regression, allowing for the addition of random effects on top
of standard fixed effects. The latter can be interpreted the same
way as coefficients in an OLS regression. Random effects are
used to model (often sparse) factor groupings that may imply
a hierarchy (nesting) within the data, or to control for multiple
observations of the same subjects in time. In OLS regression,
multiple observations can lead to multicollinearity, which can
severely limit inferential ability [53]]. LMER explicitly models
correlation within (and between) random effect groupings, thus
reducing the serious threat of multicollinearity when modeling
longitudinal data using other methods. In our data, we use
a random effect grouping for each user_id (using the term
(I|user_id) in Imer) and allow for each grouping to have a
separate, distinct regression intercept (while keeping the same
slope across all groupings). This is different than fitting a
standard linear regression to each user, as random effects allow
us to model users with far fewer data points than would be
allowed when fitting separate regressions.

We report variable significances using Satterthwaite’s ap-
proximation for denominator degrees of freedom for regression
variable t-tests, implemented using the ImerTest R library [|54].
This is considered a reasonable approach when sample sizes
are large [55]. We report psuedo-R? values, as described
by Nakagawa and Schielzeth [56], called marginal R?* and
conditional R?. The marginal R? can be interpreted as the
variance described by the fixed effects alone and conditional
R? as the variance described by both fixed and random effects.

Time pressure / too much work | 9% 10% 81%
Deadlines | 10% 14% 76%

Working on many things in parallel | 15% 17% 68%
Unclear or unrealistic requirements | 18% 18% 65%
Co-workers or manager | 24% 22% 54%
Performance / quality pressure | 20% 28% 51%
Communication issues | 24% 31% 44%

Unfulfilling work | 35% 25% 4%

Culture or language barriers | 50% “i% 17%

o
Percentage

Fig. 3. Causes of work-related stress.

We perform standard model diagnostic tests to evaluate model
fit [57]]; our models pass these tests.

We prune our fixed-effect control variables to account for
multicollinearity by considering only variables with VIF (vari-
ance inflation factor) less than 5 [53]], as having many fixed
effects along with a complex design structure can introduce
issues in model estimation. We also control for multiple
hypothesis testing by correcting the p-values in the models for
each variable using the Benjamini and Hochberg method [58]].

TABLE I
SUMMARY STATISTICS FOR WEEKLY DATA

Statistic Mean St. Dev. Min Max

week 16,380.33 756.72 13,878 17,525
cmits 9.11 12.47 0 91
projs_cmitted 1.64 1.37 0 9
cmnts 2.24 4.87 0 36
disc 1.86 4.05 0 36
cr 0.39 1.82 0 36
projs_cmnted 0.67 0.99 0 5
avg_length 226.89 230.58 0.00 1,675.00
avg_sentences 2.28 147 0.00 37.00
pos 0.59 1.51 0 34
neg 0.25 0.78 0 23
neu 1.40 3.33 0 36
avg_thread_pos 3.82 3.85 1.00 30.20
avg_response_time 1,072,561 2,941,707 0 26,235,366
company 0.54 0.50 0 1
days_active_cmit 2.28 1.74 0 7
avg_projs_cmitted_per_day 1.11 0.62 0.00 9.00
sfocus_cmit 0.44 0.65 0.00 3.17
sswitch_cmit 0.21 044 0.00 3.17
days_active_cmnt 0.90 1.38 0 7
avg_projs_cmnted_per_day 0.48 0.60 0.00 5.00
sfocus_cmnt 0.16 042 0.00 2.32
sswitch_cmnt 0.06 0.23 0.00 2.18
cmit_z —0.00 1.00 —2.57 12.78
cmnt_z —0.00 1.00 —-2.16 20.37
neg_z 0.00 1.00 —1.20 19.57
projs_cmit_z 0.00 1.00 —3.92 11.02
projs_cmnt_z —0.00 1.00 —2.68 20.37
days_activ_cmit_z —0.00 1.00 —3.67 5.37
days_activ_cmnt_z 0.00 1.00 —2.56 20.37

IV. RESULTS

A. RQI: Survey Perceptions on Work-Related Stress

Our survey looked at downstream effects of work activities,
especially work-related stress. We also investigated the social
pressure to be constantly available and how it impacted work
activities. The majority of our survey respondents reported
experiencing work-related stress (66.7%). Fewer respondents
reported feeling social pressure (37.8%).

| work outside of my normal business hours | 11% 9% 70%
the number of hours | work is | 15% 7% 68%
my communications are terse | 10% 251% 64%
my communications are negative | 5% 39% 56%
| stop working on the project | 30% 38% 32%
1 am productive | 52% 30% 16%
| communicate | 60% 25% 15%
| produce high quality code ' 50% 4%% 5%

Percentage

Fig. 4. Respondents’ perceived behaviour changes when stressed.

1) Causes of Work-Related Stress: The survey investigated
the work-activity-related causes of work-related stress. We
asked respondents to indicate, using a five-point Likert-type
scale, their agreement to a number of causes of work-related
stress. These causes were identified through our pilot survey
and are illustrated in Figure |3] For this image and all others
depicting an agreement scale, the colors indicate: dark gold
= strongly disagree, light gold = somewhat disagree, grey
= neutral, light green = somewhat agree, and dark green
= strongly agree. Most respondents agreed that too much
work, deadlines, and high multitasking are causes of work-
related stress. Thus, high workload is a leading cause of
stress according to our respondents. Many also agreed that
co-workers and communication issues are causes of stress.

We also asked participants what was more likely to cause
their work-related stress: the social or technical aspects of
their work. In the survey, we provided examples of social
(e.g. participating in issues discussions) versus technical (e.g.
writing code) to ensure a shared understanding. The majority
of respondents said that the social aspects of their work are
more likely to cause stress (144 of 187 or 77%).

2) Impacts of Work-Related Stress: Our survey also inves-
tigated how respondents perceived their behaviors to change
when they are stressed (compared to when they are not
stressed). Respondents reported working outside their normal
business hours, working more hours, and having more terse
and more negative communications. They also reported com-
municating less, being less productive, and producing less
high-quality code. The summarized responses are in Figure
[l The colors indicate: dark gold = much less, light gold =
somewhat less, grey = about the same, light green = somewhat
more, and dark green = much more.

Similarly, respondents indicated that they were impacted by
the stress of team members (see Fig. [6). They reported that this
leads to increased communication problems, redistribution of
work activities, friction within the team, and stress of others.

3) Identifying Stress in Others: We also asked the survey
participants how they become aware of the stress of others
on their team. Responses are in Figure [5] The options were
created through our pilot survey. The response with the highest
level of agreement (88%) was inferring stress from the tone,
terseness, or emotion of their communication. Further, many
agreed that stress can be inferred from a teammate’s body
language or demeanor (76%), from work assignments (61%),
and from drops in productivity (61%) or quality (65%).

4) Reducing Stress: Our survey also asked what partici-
pants do to reduce their stress. Again, the options were created

| infer from the tone / terseness / emotion of

d o 3% 9% 88%
their communication .

| infer from their body language / demeanor | 9% 14% 76%
their work quality drops | 11% 24% 65%
| ask them / they tell me | 17% 20% 63%
| infer from their work assignments / deadlines | 12% 27% 61%
their productivity drops | 11% 28% 61%

100 50 0 50 100

Percentage

Fig. 5. Mechanisms to become aware of co-workers’ stress.

Increased communication problems | 10% 26% 65%

| take on more work | 16% 211% 63%
I spend time to understand their stressors | 13% zA‘% 62%
My work is blocked | 17% 24% 59%
Increased resentment / friction on team | 19% 22% 59%
| become stressed | 18% 31% 51%
Increased pressure to perform | 17% 36‘% 46%
100 50 0 50 100

Percentage
Fig. 6. Perceived impacts when other team members are stressed.

through our pilot survey. The responses with the highest levels
of agreement are doing non-work activities and taking a break.
Responses are illustrated in Figure

5) Types of Social Pressure: For the respondents who
reported feeling social pressure to be constantly available, our
survey investigated the types of activities that lead to this
feeling. The activities that create social pressure are shown in
Fig. [§] Respondents agreed that most project-related activities
are associated with social pressure. Keeping abreast of ongoing
issue discussions had the highest level of pressure, followed
closely by completing development work and participating
in pull request discussions. Attending meetings was the only
project activity where a majority of respondents did not agree
that there was associated social pressure.

6) Impacts of Social Pressure: Our survey also investigated
how respondents perceived their behavior to change by social
pressure. Respondents felt they worked outside their normal
business hours, fragmented their work, responded to online
communications more quickly, became stressed, worked more
hours than preferred, and communicated tersely. Most did not
feel their productivity was impacted. Fig. [0 gives a summary.

RQ1 Answer: We identified many causes of work-related
stress and social pressure for developers. Developers seem
to perceive that stress and social pressure impact the way
they communicate and perform their development work.

B. RQ2: Characterizing Work-Rates

We found that the frequency distributions of the z-
normalized commit counts per week and comment counts
per week are long-tailed, i.e., they are not normally dis-
tributed. This means that there is a much higher probability
than expected to find developers’ commit and comment rates
exceeding 1 standard deviation above their average rates.

RQ2 Answer: Developers often significantly exceed their
z-normalized commit and comment rates.

9% 9% 82%

Non-work activities (exercise, music, sleep,

Take a break from v?/g:rk 14% 13% 74%
Prioritize / plan more | 14% 15% 71%
Switch work tasks | 16% 18% 65%
Ask for help / delegate | 21% 19% 60%
Limit my work hours 29% 22% 49%
Work more to catch up | 30% 22% a7%
Minimize communication | 24% 33% 43%
Change jobs | 62% 20% 18%

100 50 o 50 100

Percentage

Fig. 7. Strategies to reduce stress.

keep abreast of ongoing issue discussions = 3% 15?% 81%
complete my development work | 10% 10% 80%
participate in pull request discussions | 10% 15:% 75%
review pull requests | 9% 17% 74%
participate in issue discussions | 11% 16:% 73%
review new issues | 10% 18% 72%
be available on team chat (e.g. IRC, Slack) | 15% 15% 70%
keep abreast of ongoing pull request discussions | 1% 19:% 69%
keep abreast of team chat discussions 17% 17% 66%
participate in other work-related communication | 14% 23:% 64%
keep abreast of other work-related communication | 18% 25% 57%
keep my dependencies up-to-date | 24% 2::% 53%
attend meetings 27% 32% 41%

100 50) 50 100

Percentage

Fig. 8. Perceived social pressure.

C. RQ3: Work-rate Increase and Communication Changes

Here we investigate two facets of communication: the
sentiment of comments and the amount of commenting during
increased work-rates, both of them in terms of standard
deviation units from the average behavior over all active weeks
per developer (i.e., z-score-normalized per developer).

Table left, shows the results of our first LMER model,
where the response variable is neg_z, the per-developer, z-
normalized number of negative comments per week. The fixed
and random effects of the model together (conditional R?)
explain about 28% of the variability in the data.

Most notably, the factor cmnt_z > 1, i.e., the deviation
from the mean by more than 1 standard deviation in the
commenting weekly numbers, has a significant and positive
effect. This means that for each increase in commenting of
more than 1 standard deviation units away from the average,
the number of comments with negative sentiment grows by
approximately 0.54 standard deviations on average (while
holding all other predictors constant). On the other hand,
cmit_z > 1 is insignificant.

Other notable positive and significant factors are the number
of projects commented on, and the days spent comment-
ing. Interestingly, sfocus_cmnt has a significant and sizable
negative effect. Thus, higher focus on fewer projects when
commenting is associated with more negative sentiment within
the comments, while holding all other predictors constant.

Interestingly and counterintuitively, having made no com-
mits at all during the week and being associated with a com-
pany each have virtually no effect on the negative sentiment.

Table middle, shows that our second model, where the
response variable is the per-developer, z-normalized number
of comments per week, has a conditional R? of 94%. Here,
the results show a significant, positive association between
days_activ_cmnt_z > 1, a factor indicating a significantly
higher amount of commenting per week than average, and the

work outside my normal hours = 5% 5% 91%

fragment my work | 6% 1% 83%
respond to online communications quickly | 10% 10% 80%
be stressed | 8% 19% 73%
work more hours than | would prefer 15% 19% 66%
communicate tersely 19% 18% 62%
be productive | 36% 22% 42%

100 50 0 50 100

Percentage

Fig. 9. Respondents’ perceived behaviour changes when under social pressure.

Sentiment_z Comment_z Commit_z

(Tntercept) ~0.35 (0.03)°°70.67 (0.05)° —0.78 (0.01)"*
avg_length 0.00 (0.00)*** 0.00 (0.00)*** —0.00 (0.00)***
cmits —0.00 (0.00)* —0.00 (0.00) 0.05 (0.00)***
cmnts 0.07 (0.00)*** 0.12 (0.00)*** —0.00 (0.00)
avg_thread_pos 0.01 (0.00)*** 0.00 (0.00)*** —0.00 (0.00)

log(avg_response_time

+ 0.05) —0.01 (0.00)*** —0.00 (0.00)***0.00 (0.00)***
avg_projs_cmitted

_per_day —0.01 (0.01) —0.01 (0.00) 0.09 (0.00)***
avg_projs_cmnted

_per_day 0.01 (0.01) 0.03 (0.01)*** 0.00 (0.00)
days_active_cmit —0.00 (0.00 —0.01 (0.00)***0.06 (0.00)***

—0.02 (0.00)***0.01 (0.00)*** —0.01 (0.00)***

)

days_active_cmnt)
~0.04 (0.01)** —0.10 (0.01)*** —0.01 (0.00)**

)

)

sswitch_cmnt
sfocus_cmnt
sswitch_cmit

—0.12 (0.01)***0.03 (0.00)*** —0.01 (0.00)***

—0.00 (0.01) 0.00 —0.05 (0.00)***

(0.00)

sfocus_cmit 0.01 (0.01) 0.00 (0.00) —0.02 (0.00)***
cmnt_z>1 0.54 (0.01)* 0.82 (0.00)™* 0.02 (0.00)"*
emit_z>1 0.01 (0.01) 0.05 (0.01)*** 0.75 (0.00)***
er>1 0.07 (0.01)*** 0.15 (0.00)*** 0.00 (0.00)
disc>1 0.15 (0.01)*** 0.39 (0.00)*** 0.01 (0.00)***
projs_cmit_z>1 —0.00 (0.01) 0.01 (0.00) 0.10 (0.00)***
projs_cmnt_z>1 0.23 (0.01)*** —0.01 (0.01) 0.01 (0.00)
days_activ_cmnt_z>1 0.21 (0.01)*** 0.07 (0.00)*** 0.01 (0.00)

days_activ_cmit_z>1 —0.00 (0.01) 0.02 (0.01)*** 0.12 (0.00)***
cmits == 0 —0.00 (0.02) —0.02 (0.01)* —0.08 (0.00)***
company == 1 —0.03 (0.01)** —0.47 (0.07)*** —0.00 (0.01)
AIC 637,606.75 336,611.59 138,869.79
Num. obs. 195,593 197,323 197,323

Num. groups: user_id 2,601 2,848 2,848

marginal R? 0.24 0.25 0.85

conditional R? 0.28 0.94 0.92

*Fp < 0.001, "*p < 0.01, *p < 0.05
TABLE III
STATISTICAL MODELS

number of comments per week (all normalized). We also see
a positive but small effect of the factor cmit_z > 1.

There are also a few notable effects. First, the predictor
sswitch_cmnt has a significant and sizable negative effect
on the normalized number of comments. Thus, less pre-
dictable day-to-day focus-switching among multiple projects
commented on corresponds with an increase in commenting.
Further, the factor company has a significant and sizable
negative effect on the normalized number of comments, indi-
cating that being affiliated with a company corresponds with
a decrease of commenting.

RQ3 Answer: Periods of high levels of commenting
are associated with more negative comments. Less focus-
switching when commenting corresponds with more nega-
tive comments, and more unpredictable, day-to-day focus-
switching when commenting corresponds with an increase
in the number of comments. Commit activity does not

seem to have a sizable effect on either the number of
comments or negativity of comments. Company affiliation
is associated with a decrease in commenting, but does not
seem to affect the negativity of comments.

D. RQ4: Work-rate Increase and Committing Changes

Table right, shows that our third model, where the
response variable is the per-developer, z-normalized number
of commits per week, has a conditional R? of 92%.

Here, symmetrically to the previous model, the results are
showing a clear association between some factors indicating a
significantly higher amount of committing and the number of
commits (both per week), i.e., the factors projs_cmit_z > 1
and days_activ_cmit_z > 1 have significant, positive effects
on committing, holding all else constant. We also see a small,
positive effect of the factor cmnt_z > 1. There is no other
sizable association with any other of the commenting factors.

The predictor avg_projs_cmitted_per_day has a signifi-
cant, sizable, positive effect, and the predictor sswitch_cmit
has a significant, somewhat sizable, negative effect. Thus,
committing to more projects per day on average within a
week and less predictable day-to-day focus-switching among
multiple projects committed to correspond with an increase
in the normalized number of commits, indicating increasing
effects of multitasking on committing beyond average.

Answer to RQ4: The amount of commits does not seem
to be sizably associated with commenting. Multitasking
activities appear to affect the amount of commits.

V. DISCUSSION

Our survey, as suspected, showed that work-related activi-
ties, and especially increase in work responsibilities, lead to
work-related stress. Developers noted their various reactions to
stress and their coping mechanisms. They cited both technical
and social aspects as causes of this stress (time pressure,
multitasking, co-workers, communication, etc.).

High Technical and Social Work-rates: Similarly, from the
quantitative analysis, we see that developers often have periods
when they commit and comment much above their average
rates. These results suggest that software development is a
demanding environment both technically and socially, making
it likely that developers will experience stress.

Independence of Commenting and Committing: Although we
expected to find that the increase in the two work-rate compo-
nents, communication activities (social) and commit activities
(technical), add up, we in fact found that those have largely
independent effects on the associated changes in developer
performance. One explanation is that the two types of activities
are too different and difficult to multitask, so developers try to
separate them, e.g., by performing coding and testing during
a certain week and code review and issue discussions during
a different week. Future work can study this in detail.

Communication Overload and Negativity: In both the survey
results and our regression analysis, we have found that in-
creased social work-rates are associated with more negativity
in communications. In the survey results, a majority of respon-
dents agreed that the social aspects of their work are more
likely to cause them stress than the technical, and that when
they are stressed, their communications become more negative.
Similarly, we observe that higher-than-average commenting,
i.e., social work-rate, associates with higher negativity in
comments, with a significant and sizable effect size. Survey
responders also agreed that they become aware of the stress of
other teammates by inferring from the characteristics of their
communication (tone, emotion, etc.). This indicates that when
a team member’s communications become negative, other
teammates can tell and can be affected by it as well. From
our analysis of a sample of negative comments in our dataset,
we found quite a few reasons for the presence of negativity
on GitHub (negative reviews, time constraints, disagreements,
etc.), all of which could be products of stress and/or lead to
more stressful situations. Being on the receiving end of these
kinds of negativity in significant amounts could be detrimental
to a developer’s well-being. In fact, most survey respondents
agreed that they take on more work when they see their
team members are stressed and even become more stressed
themselves, indicating a rippling effect in which developers’
high workload and resulting stress can transfer to others who
they communicate with, a direction for future study.
Company Affiliations and Decreased Commenting: We found
that affiliation with a company is associated with a sizable
decrease in commenting. In a company setting, developers may
communicate via other, perhaps more effective means than
GitHub, indicating that online-only communication may be
less efficient. An interesting future work would be to further
investigate these possibilities.

Multitasking and Changes in Work Patterns: We found that
different kinds of technical and social multitasking are as-
sociated with increases in committing and commenting, re-
spectively. Our models show that less focus-switching when
commenting associates with more negativity, and more unpre-
dictable, day-to-day focus-switching when commenting asso-
ciates with increased communication. A plausible explanation
is that focusing on fewer projects during a day allows for
better critiquing/bug finding, and commenting within different
projects in consecutive days allows time for those bugs to
be fixed, yielding higher social productivity. Moreover, these
findings in conjunction with prior work, which found that
multitasking associates with higher technical productivity []1]],
suggest that technical and social work are multiplexed.
Recommendations Based on Findings: Our findings suggest
good practices that could reduce stress and enable stronger
and more efficient team work. First, balancing work activities
could prevent high workloads and the need for excessive
multitasking, consequently reducing the chance of stressful
reactions like overworking and negative communications. Fur-
thermore, as team members seem to pick up on others’
stressful communications and become stressed and/or resent-

ful as a result, moderating language when critiquing other
members’ work along with team building activities could
reduce the chance of stress transfer and overall allow for
more efficient communication and problem solving. Finally,
our survey results suggest that taking breaks from work is a
popular strategy for reducing stress.

VI. THREATS TO VALIDITY AND CONCLUSION

Threats: We collected developers’ information and activity
from GHTorrent, so our data is limited by how completely
GHTorrent captures developer data. Also, we do not consider
activity outside of GitHub that may influence stress levels.
But due to our large sample size, and since people’s average
behaviors tend to be similar, other contributors to stress are
likely normally distributed, making the chance of bias unlikely.

We only looked at commits to measure technical work-
rate, and discussion and code review comments to measure
social work-rate. Other technical and social contributions can
be included in future work, like issue and pull request events,
comments made on other communication platforms, etc.

Senti4SD has drawbacks that could affect our work. First,
the classifier was trained on Stack Overflow posts, which
may not accurately represent GitHub comments. Also, the
authors used the SentiStrength lexicon, which has shown to
have limited performance when applied to the SE domain.
Conclusion: Guided by the ever-increasing number and diver-
sity of tasks in the portfolios of today’s software developers,
we sought to model the effects of work-rate increase on devel-
oper communication and performance outcomes. We adopted
a multidimensional view of work-rates comprised of (1) a co-
ordinating, or social, dimension and (2) a technical dimension.
We approached the problem with a mixed qualitative (survey)
and quantitative (contextualized modeling) approach.

Our survey showed that developers do react to stress caused
by work-rate increase in various ways, and they do employ
coping mechanisms so that the stress does not spill out into
the social or technical activities.

We expected to find that the increase in the communication
and commit work-rates add up, but we found that those
have largely independent effects on the associated changes in
developer behavior, suggesting that they are not multitasked
together. Notably, our data analytics studies showed that
high social work-rate increase does sizably associate with an
important change in behavior, which also correlates with high-
stress: increased sentiment negativity in comments.

We demonstrated that the effects of work-rate increase
can be measured, and the analytics is readily usable for
downstream decision making. To individual developers, having
such feedback can be invaluable in helping them modify their
behavior before it starts affecting the community. To a team,
such analytics can be useful in keeping track of and evaluating
increase in stress-related workloads associated with group
tasks. A future work based on these methods and findings
would be to develop tools that keep track of average behavior
and semaphore unhealthy changes in real time.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. De-
vanbu, and V. Filkov, “The sky is not the limit: multitasking across
github projects,” in Proceedings of the International Conference on
Software Engineering (ICSE). 1EEE, 2016, pp. 994-1005.

M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, and D. M.
German, “How social and communication channels shape and challenge
a participatory culture in software development,” IEEE Transactions on
Software Engineering, vol. 43, no. 2, pp. 185-204, 2017.

K. Reinke and T. Chamorro-Premuzic, “When email use gets out of
control: Understanding the relationship between personality and email
overload and their impact on burnout and work engagement,” Computers
in Human Behavior, vol. 36, pp. 502-509, 2014.

L. Reinecke, S. Aufenanger, M. E. Beutel, M. Dreier, O. Quiring,
B. Stark, K. Wolfling, and K. W. Miiller, “Digital stress over the life
span: The effects of communication load and internet multitasking on
perceived stress and psychological health impairments in a german
probability sample,” Media Psychology, vol. 20, no. 1, pp. 90-115, 2017.
A. Zika-Viktorsson, P. Sundstrom, and M. Engwall, “Project overload:
An exploratory study of work and management in multi-project settings,”
International Journal of Project Management, vol. 24, no. 5, pp. 385—
394, 2006.

J. P. Borst, N. A. Taatgen, and H. van Rijn, “What makes interruptions
disruptive? a process-model account of the effects of the problem state
bottleneck on task interruption and resumption,” in CHI. ACM, 2015,
pp- 2971-2980.

C. Parnin and S. Rugaber, “Resumption strategies for interrupted pro-
gramming tasks,” Software Quality Journal, vol. 19, no. 1, pp. 5-34,
2011.

J. P. Borst, N. A. Taatgen, and H. van Rijn, “The problem state: a cog-
nitive bottleneck in multitasking.” Journal of Experimental Psychology:
Learning, memory, and cognition, vol. 36, no. 2, p. 363, 2010.

P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software engineer-
ing: A definition and systematic literature review,” Journal of Systems
and Software, vol. 107, pp. 15-37, 2015.

P. Devanbu, P. Kudigrama, C. Rubio-Gonzélez, and B. Vasilescu, “Time-
zone and time-of-day variance in GitHub teams: an empirical method
and study,” in Proceedings of the 3rd ACM SIGSOFT International
Workshop on Software Analytics (SWAN). ACM, 2017, pp. 19-22.

S. Black, R. Harrison, and M. Baldwin, “A survey of social media use
in software systems development,” in Proceedings of the 1st Workshop
on Web 2.0 for Software Engineering. ACM, 2010, pp. 1-5.

A. Begel, R. DeLine, and T. Zimmermann, “Social media for software
engineering,” in Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research. ACM, 2010, pp. 33-38.

M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The impact
of social media on software engineering practices and tools,” in Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering
Research. ACM, 2010, pp. 359-364.

Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim, “What does
software engineering community microblog about?” in Proceedings of
the 9th IEEE Working Conference on Mining Software Repositories.
IEEE Press, 2012, pp. 247-250.

Y. M. Kalman and S. Rafaeli, “Online pauses and silence: Chronemic
expectancy violations in written computer-mediated communication,”
Communication Research, vol. 38, no. 1, pp. 54-69, 2011.

I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in open
source software projects,” in Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing. ACM,
2015, pp. 1379-1392.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work. ACM, 2012, pp. 1277-1286.

——, “Leveraging transparency,” IEEE Software, vol. 30, no. 1, pp. 37—
43, 2013.

J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online
peer production: activity traces and personal profiles in github,” in Pro-
ceedings of the 2013 Conference on Computer Supported Cooperative
Work. ACM, 2013, pp. 117-128.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]
[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

J. Marlow and L. Dabbish, “Activity traces and signals in software de-
veloper recruitment and hiring,” in Proceedings of the 2013 Conference
on Computer Supported Cooperative Work. ACM, 2013, pp. 145-156.
A. Trockman, S. Zhou, C. Kistner, and B. Vasilescu, “Adding sparkle
to social coding: An empirical study of repository badges in the npm
ecosystem,” in Proceedings of the International Conference on Software
Engineering(ICSE). ACM, 2018.

K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in github and
a method for ecosystem identification using reference coupling,” in
Proceedings of the International Conference on Mining Software Repos-
itories (MSR). IEEE, 2015, pp. 202-207.

W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, “How do developers
fix cross-project correlated bugs?: A case study on the GitHub scientific
Python ecosystem,” in Proceedings of the International Conference on
Software Engineering (ICSE). 1EEE, 2017, pp. 381-392.

Y. Zhang, Y. Yu, H. Wang, B. Vasilescu, and V. Filkov, “Within-
ecosystem issue linking: a large-scale study of Rails,” in Proceedings of
the 7th International Workshop on Software Mining. ACM, 2018, pp.
12-19.

C. Bogart, C. Kistner, J. Herbsleb, and F. Thung, “How to break an api:
cost negotiation and community values in three software ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 109-120.
J. S. Rubinstein, D. E. Meyer, and J. E. Evans, “Executive control
of cognitive processes in task switching.” Journal of Experimental
Psychology: Human Perception and Performance, vol. 27, no. 4, p. 763,
2001.

S. J. Gilbert and T. Shallice, “Task switching: A PDP model,” Cognitive
Psychology, vol. 44, no. 3, pp. 297-337, 2002.

C. Rosen, “The myth of multitasking,” The New Atlantis, vol. 20, no.
Spring, pp. 105-110, 2008.

C. Ipsen, “Knowledge work and work-related stress,” in Congress of the
International Ergonomics Association, 2006.

M. Mogensen, V. Andersen, and C. Ipsen, “Ambiguity, identity con-
struction and stress amongst knowledge workers: developing collective
coping strategies through negotiations of meaning,” in International
conference on Organizational Learning, Knowledge and Capabilities,
Copenhagen, Denmark, 2008.

T. H. Davenport, Thinking for a living: how to get better performances
and results from knowledge workers. Harvard Business Press, 2005.
T. S. Kristensen, “Challenges for research and prevention in relation
to work and cardiovascular diseases,” Scandinavian Journal of Work,
Environment & Health, pp. 550-557, 1999.

J. R. Galbraith, “Designing organizations: an executive guide to strat-
egy,” Structure, 2002.

G. Mark, D. Gudith, and U. Klocke, “The cost of interrupted work: more
speed and stress,” in Proceedings of the SIGCHI conference on Human
Factors in Computing Systems. ACM, 2008, pp. 107-110.

J. K. Dua, “Job stressors and their effects on physical health, emotional
health and job satisfaction in a university,” Journal of Educational
Administration, vol. 32, no. 1, pp. 59-78, 1994.

J. Bakker, L. Holenderski, R. Kocielnik, M. Pechenizkiy, and
N. Sidorova, “Stess@ work: From measuring stress to its understanding,
prediction and handling with personalized coaching,” in Proceedings
of the 2nd ACM SIGHIT International health informatics symposium.
ACM, 2012, pp. 673-678.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. Springer, 2008, pp. 285—
311.

G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in Mining software repositories (msr), 2012 9th ieee working conference
on. 1EEE, 2012, pp. 12-21.

B. Vasilescu, A. Serebrenik, and V. Filkov, “A data set for social diversity
studies of github teams,” in Proceedings of the 12th Working Conference
on Mining Software Repositories. 1EEE Press, 2015, pp. 514-517.

V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77-101, 2006.
“Querying mongodb programmatically,” |http://ghtorrent.org/raw.html,
accessed: 2018-04-27.

E. Guzman, D. Azdécar, and Y. Li, “Sentiment analysis of commit
comments in github: an empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014,
pp. 352-355.

http://ghtorrent.org/raw.html

[43]

[44]

[45]

[46]

[47]

[48]

[49]

D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
sentiment analysis of security discussions on github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 348-351.

M. Ortu, G. Destefanis, B. Adams, A. Murgia, M. Marchesi, and
R. Tonelli, “The jira repository dataset: Understanding social aspects
of software development,” in Proceedings of the 11th international con-
ference on predictive models and data analytics in software engineering.
ACM, 2015, p. 1.

R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results
when using sentiment analysis tools for software engineering research,”
Empirical Software Engineering, vol. 22, no. 5, pp. 2543-2584, 2017.

N. Novielli, F. Calefato, and F. Lanubile, “The challenges of sentiment
detection in the social programmer ecosystem,” in Proceedings of the
7th International Workshop on Social Software Engineering. ACM,
2015, pp. 33-40.

M. R. Islam and M. F. Zibran, “Leveraging automated sentiment analysis
in software engineering,” in Proceedings of the I4th International
Conference on Mining Software Repositories. 1EEE Press, 2017, pp.
203-214.

T. Ahmed, A. Bosu, A. Igbal, and S. Rahimi, “Senticr: A customized
sentiment analysis tool for code review interactions,” in Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering. 1EEE Press, 2017, pp. 106-111.

F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment
polarity detection for software development,” Empirical Software En-

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

gineering, pp. 1-31, 2017.

M. Thelwall, K. Buckley, and G. Paltoglou, “Sentiment strength de-
tection for the social web,” Journal of the Association for Information
Science and Technology, vol. 63, no. 1, pp. 163-173, 2012.

Q. Xuan, A. Okano, P. Devanbu, and V. Filkov, “Focus-shifting patterns
of oss developers and their congruence with call graphs,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 401-412.

R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects modeling
with crossed random effects for subjects and items,” Journal of memory
and language, vol. 59, no. 4, pp. 390-412, 2008.

J. Cohen, Applied multiple regression/correlation analysis for the be-
havioral sciences. Lawrence Erlbaum, 2003.

A. Kuznetsova, P. B. Brockhoff, and R. H. Christensen, “Imertest
package: Tests in linear mixed effects models,” Journal of Statistical
Software, vol. 82, no. 13, pp. 1-26, 2017.

A. Gelman and J. Hill, Data analysis using regression and multi-
level/hierarchical models. Cambridge university press, 2006.

S. Nakagawa and H. Schielzeth, “A general and simple method for
obtaining 12 from generalized linear mixed-effects models,” Methods
in Ecology and Evolution, vol. 4, no. 2, pp. 133-142, 2013.

J. D. Singer and J. B. Willett, Applied longitudinal data analysis:
modeling change and event occurrence. Oxford University Press, 2003.
Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of the
royal statistical society. Series B (Methodological), pp. 289-300, 1995.

	Introduction
	Theory and Research Questions
	Social Coding Pressures
	Our Research Questions

	Methodology
	GitHub Developer Dataset
	Qualitative Analysis: Survey
	Quantitative Analysis: Online Activity Trace Data
	Measuring Technical Activity
	Measuring Social Activity
	Sentiment Analysis of Developers' Comments
	Data Corresponding to Threads
	Noting Company Affiliations
	Multitasking Measures
	Regression Modeling

	Results
	RQ1: Survey Perceptions on Work-Related Stress
	Causes of Work-Related Stress
	Impacts of Work-Related Stress
	Identifying Stress in Others
	Reducing Stress
	Types of Social Pressure
	Impacts of Social Pressure

	RQ2: Characterizing Work-Rates
	RQ3: Work-rate Increase and Communication Changes
	RQ4: Work-rate Increase and Committing Changes

	Discussion
	Threats to Validity and Conclusion
	References

